Detecting Kernel-Level Rootkits
Through Binary Analysis

Christopher Kruegel William Robertson and Giovanni Vigna
Technical University Vienna Reliable Software Group
chris@auto.tuwien.ac.at University of California, Santa Barbara

{wkr,vigna }@cs.ucsb.edu

Abstract The tools used by an attacker after gaining administra-
tive privileges include tools to hide the presence of the at-

A rootkit is a collection of tools used by intruders totacker (e.g., log editors), utilities to gather informatabout
keep the legitimate users and administrators of a comprghe system and its environment (e.g., network sniffersjsto
mised machine unaware of their presence. Originally, roott0 ensure that the attacker can regain access at a later time
kits mainly included modified versions of system auditinée-9-, backdoored servers), and means of attacking otser sy
programs (e.g.ps or netstat on a Unix system). How- tems. Common tools have been bundled by the hacker com-
ever, for operating systems that support loadable kerndnunity into “easy-to-use” kits, callesotkits3].
modules (e.g., Linux and Solaris), a new type of rootkit has Even though the idea of a rootkit is to provide all the
recently emerged. These rootkits are implemented as kerriebls that may be needed after a system has been compro-
modules, and they do not require modification of user-spadaised, rootkits focus in particular on backdoored programs
binaries to conceal malicious activity. Instead, thesetkde ~ and tools to hide the attacker from the system administra-
operate within the kernel, modifying critical data strues tor. Originally, rootkits mainly included modified versien
such as the system call table or the list of currently-loade@f system auditing programs (e.gs ornetstat for Unix
kernel modules. systems) [9]. These modified programs do not return any in-

This paper presents a technique that exploits binary anaformation to the administrator that involves specific filesla
ysis to ascertain, at load time, if a module’s behavior reforocesses used by the intruder. Such tools, however, are eas
sembles the behavior of a rootkit. Through this method, ily detected using file integrity checkers such as Tripwitle [
is possible to provide additional protection against thipe Recently, a new type of rootkit has emerged. These root-
of malicious modification of the kernel. Our technique ®lie kits are implemented as loadable kernel modules (LKMs). A
on an abstract model of module behavior that is not affectetbadable kernel module is an extension to the operating sys-
by small changes in the binary image of the module. Theréem (e.g., a device driver) that can be loaded into and un-
fore, the technique is resistant to attempts to conceal the mloaded from the kernel at runtime. Solaris and Linux are two
licious nature of a kernel module. popular operating systems that support this type of runtime

kernel extension.
By implementing a rootkit as a kernel module, it is possi-
ble to modify critical kernel data structures (such as tre sy
1. Introduction tem call table, the list of active processes, or the list ohké
modules) or intercept requests to the kernel regarding files

Most intrusions and computer security incidents follow zand processes that are created by an intruder [10, 14, 15].
common pattern where a remote user scans a target systénce the kernel is infected, it is very hard to determine
for vulnerable services, launches an attack to gain sonee tyff a system has been compromised without the help of
of access to the system, and, eventually, escalates hér prihardware extensions such as the Trusted Platform Module
leges. These privileges are then used to create backdabrs tirPM) [17, 12]. Therefore, it is important that mechanisms
will allow the attacker to return to the system at a later timeare in place to detect kernel rootkits and prevent theirinse
In addition, actions are taken to hide the evidence that théon into the kernel.
system has been compromised in order to prevent the sys- In this paper, we present a technique for the detection of
tem administrator from noticing the security breach and imkernel-level rootkits in the Linux operating system. Thehte
plementing countermeasures (e.g., reinstalling the sy)ste nique is based on static analysis of loadable kernel module

binaries. More precisely, the use of behavioral specificati the file system, and, therefore, it may be detected using in-
and symbolic execution allow one to determine if the modtegrity checkers.
ule being loaded includes evidence of malicious intent. Another way to modify the behavior of the kernel is to
The contribution of this approach is twofold. First, by us-access kernel memory directly from user space through the
ing static analysis, our technique is able to determine if &lev/kmem file. This technique (used, for example, by
kernel module is malicioubeforethe kernel module is ac- SucKIT [13]) requires the identification of data structures
tually loaded into the kernel and executed. This is a majdthat need to be modified within the kernel image. However,
advantage, because once the kernel image has been mdHis is not impossible; in particular, well-known data stru
fied it may become infeasible to perform dynamic analysigures such as the system call table are relatively easy to lo-
of the module’s actions in a reliable way. Second, the tectsate.
nique is applied to the binary image of a module and does not Kernel-level rootkits can be detected in a number of dif-
require access to the module’s source code. Because of tHigtent ways. The most basic techniques include searching
the technique is widely applicable and it is possible to andor modified kernel modules on disk, searching for known
lyze the behavior of device drivers and other closed-sourcdrings in existing binaries, or searching for configunatio
kernel components that are distributed in binary form only. files associated with specific rootkits. The problem is that
The rest of the paper is structured as follows. Section when a system has been compromised at the kernel level,
discusses related work on rootkits and rootkit detecties- S there is no guarantee that these detection tools will retn
tion 3 presents our approach to the detection of kernel-levéable results. This is also true for signature-based riodék
rootkits. Then, Section 4 provides an experimental evaludection tools such ashkrootkit ~ [11] that rely on oper-
tion of the effectiveness and efficiency of our technique. Fiating system services to scan a machine for indications of
nally, Section 5 discusses possible limitations of theentrr known rootkits.

prototype, while Section 6 briefly concludes. To circumvent the problem of a possibly untrusted op-
erating system, rootkit scanners such kstat [4],

rkscan [2], or St. Michael [8] follow a different ap-
2. Related Work proach. These tools are either implemented as kernel
modules with direct access to kernel memory, or they an-
Kernel-level rootkits have been circulating in the underalyze the contents of the kernel memory Ydgev/kmem .
ground hacker community for some time and in differenBoth techniques allow the programs to monitor the in-
forms [6]. In general, there are different means that can b&grity of important kernel data structures without the ose
used to modify kernel behavior. system calls. For example, by comparing the system call ad-
The most common way of modifying the kernel is by in-dresses in the system call table with known good values

serting a loadable kernel module. The module has acced@ken from the/boot/System.map file), it is possi-

to the symbols exported by the kernel and can modify an§'€ {© identify hijacked system call entries. -

data structure or function pointer that is accessible. Typi NS approach is less prone to being foiled by a kernel-

cally, these kernel-level rootkits “hijack” entries in thgs- level rootkit because kernel memory is accessed dlrectly._

tem call table and provide modified implementations of thé\evertheless, changes can only be detected after a rootkit

corresponding system call functions [10, 14]. These modfas been m;talled. In th|s case, the rootkit had the ch_am_:et

fied system calls often perform checks on the data passgaecgte arbltrary_code in the context of the kernel. Thus, |t.

back to a user process and can thus efficiently hide inform®0Ssible that actions have been performed to thwart or dis-

tion about files and processes. An interesting variatiomis i 2Pl€ rootkit scanners. Also, rootkits can carry out charges

plemented by thadore-ng rootkit [15, 16]. In this case, locations that are not monitored (e.g., task structures).

the rootkit does not touch the system call table but hijale&s t

routines used by the Virtual File System (VFS), and, there3. Rootkit Detection

fore, itis able to intercept (and modify) calls that accdssfi

in both the/proc file system and the root file system. The idea for our detection approach is based on the ob-
A related technique injects malicious code directly intoservation that the runtime behavior of regular kernel mod-

existing kernel modules instead of providing a completelles (e.g., device drivers) differs significantly from the-b

rootkit module. While this solution is in principle similaws havior of kernel-level rootkits. We note that regular masul

the insertion of a rootkit kernel module, it has the advanhave different goals than rootkits, and thus implemenediff

tage that the modification will survive a kernel reboot pro-ent functionality.

cedure if the modified module is automatically loaded in the The main contribution of this paper is that we show that it

kernel standard configuration. On the other hand, this tecls possible to distinguish between regular modules and root

nigue requires the modification of a binary that is stored okits by statically analyzing kernel module binaries. Thalan

ysis is performed in two steps. First, we have to specify undehe /proc file system. This is accomplished by changing
sirable behavior. Second, each kernel module binary is stathe function addresses in tigroc file system root node
cally analyzed for the presence of instructions sequemhegs t that point to the corresponding read and write functions. Be
implement these specifications. cause théproc file system is used by many auditing tools
Currently, our specifications are given informally, and théo gather information about the system (e.g., about running
analysis step has to be adjusted appropriately to deal witirocesses, or open network connections), a rootkit can eas-
new specifications. Although it might be possible to intro-ly hide important information by filtering the output that i
duce a formal mechanism to model behavioral specificationpassed back to the user process. An example of this approach
it is not necessary for our detection prototype. The reason is theadore-ng rootkit [16], which replaces functions of
that a few general specifications are sufficient to accwyratethe virtual file system (VFS) node of thproc file sys-
capture the malicious behavior of all LKM-based rootkitstem.
Nevertheless, the analysis technique is powerful enougthth As a general observation, we note that rootkits perform
it can be easily extended. This may become necessary whemites to a number of locations in the kernel address space
rootkit authors actively attempt to evade detection by ghan that are usually not touched by regular modules. Theseswrite
ing the code such that it does not adhere to any of our spe@ire necessary either to obtain control over system services
fications. (e.g., by changing the system call table, file system funstio
or the list of active processes) or to hide the presence of the
kernel rootkititself (e.g., modifying the list of instatlenod-
ules). Because write operations to operating system manage
ment structures are required to implement the needed func-
tionality, and because these writes are unique to kernél roo
its, they present a salient opportunity to specify malisio

3.1. Specification of Behavior

A specification of malicious behavior has to model a se
guence of instructions that is characteristic for rootkis
that does not appear in regular modules (at least, with a hi .
probability). Thatis, we have to analyze the behavior of+oo ehavior.

kits to derive appropriate specifications that can be used du | To be m(ilr(?[Eremge, V\;ﬁ |(?celr|1t|fy_ a It(\)sdiblﬁ k_ernell mod_-
ing the analysis step. ule as a rootkit based on the following two behavioral speci-

In general, kernel modules (e.g., device drivers) initial-flcatlonS:

ize their internal data structures during startup and then i 1. The module contains a data transfer instruction that per-
teract with the kernel via function calls, using both system forms a write operation to an illegal memory area, or
calls or functions internal to the kernel. In particularjsit
not often necessary that a module directly writes to kernel ™
memory. Some exceptions include device drivers that read
from and write to memory areas that are associated with a
managed device and that are mapped into the kernel address
space to provide more efficient access or modules that over- Whenever the destination address of a data transfer can
write function pointers to register themselves for evetfit ca be determined statically during the analysis step, it ispos
backs. ble to check whether this address is within a legitimate.area
Kernel-level rootkits, on the other hand, usually write di-The notion of legitimate areas is defined by a white-list that
rectly to kernel memory to alter important system managespecifies the kernel addressed that can be safely written to.
ment data structures. The purpose is to intercept the negulgor our current system, these areas include function psinte
control flow of the kernel when system services are requestersed as event call-back hooks (ely.,ioctl _hook())or
by a user process. This is done in order to monitor or changsported arrays (e.doJk _dev).
the results that are returned by these services to the user pr One drawback of the first specification is the fact that the
cess. Because system calls are the most obvious entry podigstination address must be derivable during the statle ana
for requesting kernel services, the earliest kernel-levet- ysis process. Therefore, a complementary specification is i
kits modified the system call table accordingly. For examplaroduced that checks for writes to any memory address that
one of the first actions of thknark [10] rootkit is to re- is calculated using a forbidden kernel symbol.
place entries in the system call table with customized func- A kernel symbol refers to a kernel variable with its cor-
tions to hide files and processes. responding address that is exported by the kernel (e.g., via
In newer kernel releases, the system call table is no longéproc/ksysm). These symbols are needed by the module
exported by the kernel, and thus it cannot be directly adeader, which loads and inserts modules into the kernel ad-
cessed by kernel modules. Therefore, alternative appesachdress space. When a kernel module is loaded, all references
to influence the results of operating system services have external variables that are declared in this module but de
been proposed. One such solution is to monitor accessesfioed in the kernel (or in other modules) have togagched

the module contains an instruction sequence that i) uses
aforbiddenkernel symbol reference to calculate an ad-
dress in the kernel’'s address space and ii) performs a
write operation using this address.

appropriately. This patching process is performed by $ubst Note that our behavioral specifications have the advantage
tuting the place holder addresses of the declared variabl#sat they provide a general model of undesirable behavior.
in the module with the actual addresses of the correspondhat is, these specifications characterize an entire class o
ing symbols in the kernel. malicious actions. This is different from fine-grained spec
The notion of forbidden kernel symbols can be basetfications that need to be tailored to individual kernel mod-
on black-lists or white-lists. A black-list approach enume ules. In addition, behavioral specifications have the poten
ates all forbidden symbols that are likely to be misused bijal to detect previously unknown rootkits. In contrast o a
rootkits, for example, the system call table, the root of the@roaches that rely on anti-virus-like pattern matchindtec
Iproc file system, the list of modules, or the task structurdiques, our tool can detect any kernel-level rootkit théssa
list. A white-list, on the other hand, explicitly defines ac-fies our assumptions.
ceptable kernel symbols that can legitimately be accesged b
modules. As usual, a white-list approach is more restectiv 3 o Symbolic Execution
but may lead to false positives when a module references a
legitimate but infrequently used kernel symbol that has not Based on the specifications introduced in the previous
been allowed previously. However, following the principlesection, the task of the analysis step is to statically chieek
of fail-safe defaults, a white-list also provides grea&sua- module binary for instructions that correspond to these-spe
ance that the detection process cannot be circumvented. fications. When such instructions are found, the module is
Note that it is not necessarily malicious when a forbiddemabeled as a rootkit.
kernel symbol is declared by a module. When such a symbol we perform analysis on binaries using symbolic execu-
is not used for awrite access, it is not problematic. There-tjon. Symbolic execution is a static analysis technique in
fore, we cannot reject a module as a rootkit by checking th@hich program execution is simulated using symbols, such
declared symbols only. as variable names, rather than actual values for input data.
Also, it is not sufficient to check for writes that target aThe program state and outputs are then expressed as math-
forbidden symbol directly. Often, kernel rootkits use suctematical (or logical) expressions involving these symbols
symbols as a starting point for more complex address calcWhen performing symbolic execution, the program is basi-
lations. For example, to access an entry in the system calhlly executed with all possible input values simultandgus
table, the system call table symbol is used as a base athus allowing one to make statements about the program be-
dress that is increased by a fixed offset. Another exampleavior.
is the module list pointer that is used to traverse a linketd li One problem with symbolic execution is the fact that it
of module elements until the one that should be removed is impossible to make statements about arbitrary programs
reached. Therefore, a more extensive analysis has to be pgrgeneral, due to the halting problem. However, when the
formed to also track indirect uses of forbidden kernel symeompleteness requirement is relaxed, it is often possible t
bols for write accesses. obtain useful results in practice. Relaxing the completene
A clever intruder could use an attack in which two mod-equirementimplies that the analysis is not guaranteed+o d
ules cooperate to evade detection. In this attack, a first motect malicious instructions sequences in all cases. Howeve
ule only reads the sensitive address (e.g., the address of this can be tolerated when most relevant instances are found
system call table) and then it exports a function to access In order to simulate the execution of a program, or, in our
the address. A second module then reads the sensitive adse, the execution of a loadable kernel module, it is neces-
dress indirectly from the first module and uses it for an illesary to perform two preprocessing steps.
gal write access. To thwart this evasion, all symbols and re- First, the code sections of the binary have to be disas-
turn values of functions declared by other kernel modules asembled. In this step, the machine instructions have to be
also marked as forbidden. Thus, when the second module asxtracted and converted into a format that is suitable for
cesses the function exported by the first module, the retugymbolic execution. That is, it is not sufficient to simply
value is tagged as forbidden and also subsequent write op@rint out the syntax of instructions, as done by programs
ations based on this value would result in an alarm. such asobjdump . Instead, the type of the operation and
Naturally, there is an arms-race between rootkits that ugts operands have to be parsed into an internal representa-
more sophisticated methods to obtain kernel addresses atigh. The disassembly step is complicated by the complexity
our detection system that relies on specifications of malief the Intel x86 instruction set, which uses a large number
cious behavior. For current rootkits, our basic specificeti of variable length instructions and many different address
allow for reliable detection with no false positives (see-Se ing modes for backwards compatibility reasons.
tion 4 for details). However, it might be possible to circum- In the second preprocessing step, it is necessary to ad-
vent these specifications. In that case, it is necessaroto pijust address operands in all code sections present. The rea-
vide more elaborate descriptions of malicious behavior. son is that a Linux loadable kernel module is merely a stan-

dard ELF relocatable object file. Therefore, many memorgubsequently be loaded. This is particularly common for the
address operands have not been assigned their final valstack area when return addresses are pushed on the stack by
yet. These memory address operands include targets of juragall operation and later loaded by the correspondingmetur
and call instructions but also source and destinationimeat instruction.
of load, store, and move instructions. During symbolic execution, we can simulate the effect of
For a regular relocatable object file, the addresses are aakithmetic, logic, and data transfer instructions. To #misl,
justed by the linker. To enable the necessary link operationthe values of the operands are calculated and the required op
a relocatable object also contains, besides regular cadle a@ration is performed. When at least one of the operands is an
data sections, a set of relocation entries. Note, howevatr, t unknown token, the result is also unknown.
kernel modules are not linked to the kernel code by a regular Another feature is dainting mechanism that tags val-
linker. Instead, the necessary adjustment (i.e., patgtohg ues that are related to the use of forbidden kernel symbols.
addresses is performed during module load time by a specMlhenever a forbidden symbol is used as an operand, even
module loader. For Linux kernels up to version 2.4, most ohen its value is unknown, the result of the operation is
the module loader ran in user space; for kernels from versianarked as tainted. Whenever a tainted value is later used by
2.5 and up, much of this functionality was moved into theanother instruction, its result becomes tainted as welis Th
kernel. To be able to simulate execution, we perform a praallows us to detect writes to kernel memory that are based on
cess similar to linking and substitute place holdersiruest the use of forbidden symbols.
tion operands and data locations with the real addresses. Th For the initial machine state, we prepare the processor
has the convenient side-effect that we can mark operantds tisate such that the instruction pointer register is pogntin
represent forbidden kernel symbols so that the symbolic exe the first instruction of the module’s initialization rdns,
ecution step can later trace their use in write operations. while the stack pointer and the base (i.e., frame) pointgr re
When the loadable kernel module has been disassemblister refer to valid addresses on the kernel stack. All other
and the necessary address modifications have occurred, tiegisters and the entire memory is marked as unknown.
symbolic execution process can commence. To this end, an Then, instructions are sequentially processed and the ma-
initial machine statés created and execution starts with thechine state is updated accordingly. For each data trarissfer,
module’s initialization routine, calleishit _module() . is checked whether data is written to kernel memory areas
Handling Machine State The machine state represents a:jhat are n_ot EXp“CI(;lg permlttid by the Wh':jel;“St’ orwt(':;
snapshot of the system during symbolic execution. That is ?]Ea E_(\;V(;ltten tog | resses thatare tainted because eu
the machine state contains all possible values that could ge orbidden symbo's.
The execution of instructions continues until execution

present in the processor registers and the memory addr?é?minates with the final return instruction of the initzt

spac_e of the runnlng process aF a certain p0|r_1t during the ?ﬁbn function, or until a control flow instruction is reached
ecution process. Given the notion of a machine state, an in-

struction can then be defined as a function that maps one mdandling Control Flow Control flow instructions present
chine state into another one. This mapping will reflect the eforoblems for our analysis when they have two possible suc-
fect of the instruction itself (e.g., a data value is movexhfr cessor instructions (i.e., continuations). In this casesym-
one register to another), but also implicit effects suchnas i bolic execution process must either select a continuation t
crementing the instruction pointer. continue at, or a mechanism must be introduced to save the
When complete knowledge about the processor and merodrrent machine state at the control flow instruction and ex-
ory state is available, and given the absence of any input aipdbre both paths one after the other. In this case, the execu-
external modifications of the machine state, it would be podion first continues with one path until it terminates ancithe
sible to deterministically simulate the execution of a modbacks up to the saved machine state and continues with the
ule. However, in our case, the complexity of such a comether alternative.
plete simulation would be tremendous. Therefore, we intro- The only problematic type of control flow instructions are
duce a number of simplifications that improve the efficiencygonditional branches. This is because it is not always possi
of the symbolic execution process, while retaining the-abilble to determine the real target of such a branch operation
ity to detect most malicious instruction sequences. statically. The most common reason is that the branch con-
A main simplification is the fact that we consider the ini-dition is based on an unknown value, and thus, both continu-
tial configuration of the memory content as unknown. Thisations are possible. Neither unconditional jumps nor call i
means that whenever a value is taken from memory, a spstructions are a difficulty because both only have a single ta
cial unknown tokeiis returned. However, it does not imply getinstruction where the execution continues. Also, cait$
that all loads from memory are automatically transformedhe corresponding return operations are not problematic be
into unknown tokens. When known values are stored at cecause they are handled correctly by the stack, which is part
tain memory locations, these values are remembered and aafithe machine state.

Because malicious writes can occur on either path aftdoop would prevent the execution process from terminating.
a conditional branch, we chose to save the machine staiée reason is that both continuations of the branch that cor-
at these instructions and then consecutively explore Heth aesponds to the loop termination condition are explored, (i.
ternative continuations. Unfortunately, this has a nurmdfer the loop body and the code path after the loop). When the
problems that have to be addressed. path that follows the loop body eventually reaches the loop
termination condition again, the state is saved a secora tim
Then, as usual, both alternative continuations are exglore
One of these continuations is, of course, the loop body that

if (x) then

block A; leads back to the loop termination condition, where the pro-
else cess repeats.
block B;

block B

To force termination of our symbolic execution process,
it is necessary to remove control flow loops. Note that it is

if (y) then not sufficient to simply mark nodes in the control flow that
elleOCk Ci have been previously processed. The reason is that nodes can
block D; be legitimately processed multiple times without the exis-

tence of loops. In the example shown in Figure 1, the sym-
bolic execution processes node 4 twice because of the join-
ing control flows from node 2 and node 3. However, no loop
is present, and the analysis should not terminate prenmature
when reaching node 4 for the second time.

Figure 1. Example control flow graph.

One problem is caused by the exponential explosion of
possible paths that need to be followed. Consider the case of
multiple branch instructions that are the result of a sesfes
if-else constructs in the corresponding source code (3ee Fi
ure 1). After each if-else block, the control flow joins. Irsth
example, the machine state needs to be saved at node 1, at
thebranch(x) instruction. Then, the first path is taken via
node 2. The machine state is saved a second time at node 4
and both the left and the right path are subsequently exe-
cuted (using the state previously saved at node 4). Then, the
execution process is rewinded to the first check point, and
continues via the right path (i.e., via node 3). Again, the ma
chine state needs to be saved at node 4, and both alterna-
tives are followed a second time. Thus a total of four paths
have to be explored as a result of only two branch instruc-
tions.

Also, it is possible that impossible paths are being fol-
lowed. If, in our example, both thbranch(x) and the
branch(y) instructions evaluated to the same boolean
value, it would be impossible that execution flows through
nodes 2 and 6, or through nodes 3 and 5. For our prototype, Instead, a more sophisticated algorithm based on the con-
the path explosion problem and impossible paths have ntol flow graph of the binary is necessary. In [1], a suitable
caused any difficulties (refer to Section 4 for the evaluatioalgorithm is presented that is based on dominator trees. Thi
of our system). This is due to the limited size of the kernehlgorithm operates on the control flow graph and can detect
modules. Therefore, we save the machine state at every cdand remove) the back-edges of loops. Simply speaking, a
ditional branch instruction and explore both alternativa-c back-edge is the jump from the end of the loop body back to
tinuations. the loop header, and it is usually the edge that would be iden-

Another problem is the presence of loops. Because thdied as the “loop-defining-edge” by a human looking at the
machine state is saved at every branch instruction and batbntrol flow graph. For example, Figure 2 shows a control
alternatives are explored one after another, the existeiree flow graph with a loop and the corresponding back-edge.

|
1
1

U
,/ Back-Edge

Figure 2. Control flow graph with loop.

For our system, we first create a control flow graph of thellers, whileadore-ng patches itself into the VFS layer of
kernel module code after it has been preprocessed. Thenthee kernel to intercept accesses to theoc file system.
loop detection algorithm is run and the back-edges are d&ince each rootkit was extensively analyzed during the pro-
tected. Each conditional branch instruction that has a-backotype development phase, it was expected that all makciou
edge as a possible continuation is tagged appropriatety. Dikernel accesses would be discovered.
ing symbolic execution, no machine state is saved at these
instructions and processing continues only at the non-back The second set consisted of a set of seven additional pop-
edge alternative. This basically means that a loop is erelcutular rootkits downloaded from the Internet, described in Ta
at most once by our system. For future work, we intend to résle 1. Since these rootkits were not analyzed during the pro-
place this simple approach by more advanced algorithms féotype development phase, the detection rate for this group
symbolic execution of loops. Note, however, that more socan be considered a measure of the generality of the detec-
phisticated algorithms that attempt to execute a loop multtion technique as applied against previously unknown root-
ple times will eventually hit the limits defined by the hayin Kkits that utilize similar means to subvert the kernekaark
problem. Thus, every approach has to accept a certain de@dadore-ng
gree of incompleteness that could lead to incorrect results

A last problem are indirect jumps that are based on un- The final set consisted of a control group of legitimate
known values. In such cases, it might be possible to heuristernel modules, namely the entire default set of kernel mod-
cally choose possible targets and speculatively contiritie w ules for the Fedora Core 1 Linux x86 distribution. This
the execution process there. In our current prototype, hovget includes 985 modules implementing various components
ever, we simply terminate control flow at these points. Théf the Linux kernel, including networking protocols (e.g.,
reason is that indirect jumps based on unknown values dPV6), bus protocols (e.g., USB), file systems (e.g., EXT3),
most never occurred in our experiments. and device drivers (e.g., network interfaces, video caits)

was assumed that no modules incorporating rootkit funetion

4. Evaluation ality were present in this set.

The proposed rootkit detection algorithm was imple- Table 2 presents the results of the detection evaluation for

: .ea;ﬂch of the three sets of modules. As expected, all malicious
mented as a user space prototype that simulated the objec
writes to kernel memory by botknark andadore-ng

parsing and symbol resolution pe.rformed b.y the existy ere detected, resulting in a false negative rate of 0% for
ing kernel module loader before disassembling the mod- : o .)
oth rootkits. All malicious writes by each evaluation root

ule and analyzing the code for the presence of malicious o .
: ! it were detected as well, resulting in a false negativeaéte
writes to kernel memory. The prototype implementa,

TF% for this set. We interpret this result as an indicatior tha

tion was evaluated with respect to its detection capabi

o . . he detection technique generalizes well to previously un-

ities and performance impact on production systems. TQ . : o .
) . . : . seen rootkits. Finally, no malicious writes were reportgd b

this end, an experiment was devised in which the prot

Fhe prototype for the control group, resulting in a false-pos

type was run on several sets of kernel modules. Detec“%ve rate of 0%. We thus conclude that the detection algo-

capability for each set was evaluated in terms of false PO%ithm is completely successful in distinguishing rootldts

ltive rates for legitimate modules, and false negatlvesrat%ibiting specified malicious behavior from legitimate keirn

for rootkit modules. Detection performance was evalu- . e : .
X i . modules, as no misclassifications occurred during theeentir
ated in terms of the total execution time of the prototyp

e . .
o detection evaluation.
for each module analyzed. The evaluation itself was con-

ducted on a testbed consisting of a single default Fedora
Core 1 Linux installation on a Pentium IV 2.0 GHz work-
station with 1 GB of RAM.

scan: initializing scan for rootkits/all-root.o
scan: loading kernel symbol table from boot/System.map
. scan: kernel memory configured [c0100000-c041eaf8]
4.1. Detection Results scan: resolving external symbols in section .text
scan: disassembling section .text

. . can: performing scan from [.text+40
For the detection evaluation, three sets of kernel moi—can; \F;\/RITE T% KERNEL I\EIEMORY] [c0347df0] at [text+50]

ules were created. The first set Comprised khark and scan: 1 malicious write detected, denying module load
adore-ng rootkits, both of which were used during de-
velopment of the prototype. As mentioned previously, both
rootkits implement different methods of subverting the-con
trol flow of the kernelknark overwrites entries in the sys-
tem call table to redirect various system calls to its own-han

Figure 3. all-root rootkit analysis.

Rootkit | Technique| Description
adore| syscalls | File, directory, process, and socket hiding
Rootshell backdoor
all-root | syscalls | Gives all processes UID 0
kbdv3 | syscalls | Gives special user UID 0
kkeylogger| syscalls | Logs keystrokes from local and network logins
rkit | syscalls | Gives special user UID 0
shtroj2 | syscalls | Execute arbitrary programs as UID 0
synapsys| syscalls | File, directory, process, socket, and module hiding
Gives special user UID 0

Table 1. Evaluation rootkits.

Module Set| Modules Analyzed Detections| Misclassification Rate

Development rootkitg 2 2 0 (0%)
Evaluation rootkits 6 6 0 (0%)
Fedora Core 1 modules 985 0 0 (0%)

Table 2. Detection results.

To verify that the detection algorithm performed correctlyy5000040 <init module>:

on the evaluation rootkits, traces of the analysis perfarme 40- a1 60 00 00 00 mov 0x60,%eax
by the prototype on each rootkit were examined with re- 45: 55 push %ebp
spect to the corresponding module code. As a simple exam46: 89 e5 mov %esp,%ebp
ple, consider the case of tadl-root rootkit, the analy- 48: a3 00 00 00 00 mov %eax,0x0
sis trace of which is shown in Figure 3. From the trace, we 4d: 5d pop %ebp

can see that one malicious kernel memory write was detectede: 31 c0 xor Y%eax,%eax
at.text+50 (i.e., at an offset of 50 bytes into thiext 50: ¢7 05 60 00 00 00 00 movl $0x0,0x60
section). By examining the disassembly of #deroot 2; gg 00 00 et

module, the relevant portion of which is shown in Fig-
ure 4, we can see that the overwrite occurs in the module’s Eigyre 4. all-root module disassembly.
initialization function,init _module() . Specifically, the
movl instruction at.text+50 is flagged as a malicious
write to kernel memory. Correlating the disassembly with
the corresponding rootkit source code, shown in Figure 5, int init_module(void)
we can see that this instruction corresponds to the write
thesys _call _table arraytoreplace thgetuid() sys-
tem call handler with the module’s malicious version at line,
4. Thus, we conclude that the rootkit's attempt to redirect a

orig_getuid =
sys_call_table[__NR_getuid];
sys_call_table[NR_getuid] =

give_root;
system call was properly detected. 5
6 return O;
4.2. Performance Results 7}
For the performance evaluation, the elapsed execution Figure 5. all-root initialization function.

time of the analysis phase of the prototype was recorded

for all modules, legitimate and malicious. Time spent pars- .
ing the object file and patching relocation table entries intth® module was excluded, as these functions are already per-
formed as part of the normal operation of the existing mod-

1 Note that this disassembly was generated prior to kermebsyresolu- .Llle.loa_der' The goal of the evaluation was _tO prowde Some
tion, thus the displayed read and write accesses are pextbom place 'nd|cat_|0n about th_e performapce overhead 'nFrOduced‘by.th
holder addresses. At runtime and for the symbolic execitfenproper detection process in the loading of a module in a production
memory address would be patched into the code. kernel. Note that as mentioned previously, no runtime over-

head is generated by our technique after the module has beenOur tool is currently available as a user program only. In
loaded. order to provide automatic protection from rootkits, it idu

be necessary to integrate our analyzer into the kernel's mod
ule loading infrastructure. As an additional requireméng,

Detection Overhea == analyzer must not be bypassable when a process with root
permissions attempts to load a module. The reason is that
100 . kernel modules can only be inserted by the root user. Thus,
the threat model has to assume that the attacker has supe-
ruser privileges when attempting to load a kernel module.

Up until Linux 2.4, most work of the module loading pro-

1000

Number of Modules

10 E

HT cess was done in user space, usingrnisenod program. In
) g Al this case, adding our checkeritsmod would not be use-
0 100 200 300 400 500 . .
Execution Time (ms) ful because an attacker can simply supply a customized ver-

sion without checks. The solution is to move the analyzer
code into kernel space. Interestingly, starting from Ligu,
most of the module loading code has been moved into the
kernel space, providing an optimal place to add our checks.
Figure 6 shows the elapsed execution time of all evalu- ynfortunately, mechanisms have been proposed to inject
ated modules, discretized into log-scale buckets with &wid code directly into the kernel without using the module load-
of 10 ms. As we can see, the vast majority of modules woulghg interface. These ideas originated from the fact thatesom
experience a delay of 10 ms or less during module load. Se¥ystem administrators disabled the module loading funetio
eral modules with more complex initialization proceduresity as a defense against kernel-level rootkits. Thesenmec
(and thus complex control flow graphs) required more tim@nisms operate by writing the code directly into kernel spac
to fully analyze, but as can be seen in Table 3, the detectiqfa the/dev/kmem device, completely bypassing the mod-
algorithm never spent more than 420 ms to classify a moqye loading code.
ule as malicious or legitimate. Thus, we conclude that the |, oyr opinion, a sensible and secure solution would disal-
impact of the detection algorithm on the module load opergg,, modifications of kernel memory videvikmem |, a fea-
tion is acceptable for a production system. ture that is already offered by Linux security solutionstsuc
as grsecurity [5]. In addition, our kernel-level rootkitzdyr

Figure 6. Detection overhead on module load.

Minimum | Maximum | Median | Std. Deviation sis system would operate in kernel context behind the mod-
0.00 ms | 420.00 ms]| 0.00 ms] 3983 ule loading interface, thus having the opportunity to stati
) o cally scan each module before it gets to run as part of the
Table 3. Detection overhead statistics. kernel.

A possible way for rootkits to evade the behavioral spec-
ification that is based on forbidden kernel symbols (see Sec-
tion 3 for details) is to stop using these symbols. Howewer, t
5. Discussion perform the necessary modifications of the kernel data-struc
tures or function pointers, their addresses are neededeThe
Our prototype is a user-space program that statically afiere, alternative approaches to resolving these addresses
alyzes Linux loadable kernel modules for the presence dgequired. One option is to use a brute force guessing tech-
rootkit functionality. These modules have to be ELF objectique that works by scanning the kernel memory for the oc-
files that are compiled for the Intel x86 architecture. currence of “known content” that is stored at the target{oca
The limitation on the classes of modules that can be artion. This is particularly effective for the system call kab
alyzed stems from the fact that a kernel module needs to Jée reason is that its content is known because system calll
parsed and its code sections disassembled before the actiglle entries are pointers to handler functions whose sym-
analysis can start. Therefore, additional parsing andsdisabols are exported.
sembly routines would be necessary to process different ob- Although a brute force guessing approach might not al-
ject file formats or instruction sets. Because a vast mgjoritways be suitable, we propose the addition of a specifica-
of Linux systems run on Intel x86 machines, and becaud#n that considers the scanning of kernel memory as an-
Linux kernel modules have to be provided as ELF objectther indication of the presence of a rootkit. This specifi-
files, we developed our prototype for this combination. Theation checks for loops that, starting from any kernel sym-
analysis technique itself, however, can be readily exténdéool, sequentially read data and compare this data to canstan
to other systems. values. Also, note that the specification that checks for il-

legitimate memory accesses based on actual destination ddeferences

dresses works independently of kernel symbols referenced
by the module.

6. Conclusions

Rootkits are powerful attack tools that are used by in-

truders to hide their presence from system administratorsis)

Kernel-level rootkits, in particular, directly modify tHeer-

nel, and, therefore, can intercept and prevent any attempt q4]
an administrator to determine if the security of the system[s]

has been violated. Because of this, it is important to devise
mechanisms that can protect the integrity of the kernel even

in the aftermath of the compromise of the administrator ac-[6]

count.

This paper presents a technique that is based on statil/]

analysis to identify instruction sequences that are an indi
cation of rootkits. Informal behavioral specifications defi
such characteristic instruction sequences as data trasfe
erations that write to certain illegitimate kernel memory a

eas. Symbolic execution is then used to simulate the execJ—g]

tion of the kernel module to detect instructions that fulfill

these specifications. Through this method, it is possible 1%0]

detect malicious behavideforea module is loaded into the

. - .. . 11
kernel, and, in addition, it is possible to operate on clesec}]

source components, such as proprietary drivers. [

We implemented our technique in a prototype tool and we
evaluated both the effectiveness and the performance of t
tool with respect to nine real-world rootkits as well as the

complete set of 985 legitimate kernel modules that are in14)

cluded with the Fedora Core 1 Linux distribution. The re-

sults show that all tested rootkits were successfully ident[15]

fied, and no false positives were raised on legitimate mod-

ules. We thus conclude that the technique can reliably dét6]

tect malicious kernel modules and, therefore, it represant

useful tool to harden the operating system kernel. In addi17]

tion, we show that detection can be done efficiently, despite
the application of a potentially expensive static analiesi-
nique.

Future work will be centered on devising a more formal
description of the aspects that characterize rootkit-fike
havior. In addition, we plan to study how attacks that attemp
to bypass our detection procedures can be prevented.yinall
we intend to integrate the detection component into the ker-
nel module loader infrastructure as a step towards pregparin
the system for general usage.

Acknowledgments

This research was supported by the Army Research Of-
fice, under agreement DAAD19-01-1-0484 and by the Na-
tional Science Foundation under grants CCR-0209065 and
CCR-0238492.

(2]

[8] T. Lawless.

[1] A. Aho, R. Sethi, and J. Ullman.Compilers — Principles,

Techniques, and ToolsWorld Student Series of Computer
Science. Addison Wesley, 1986.

S. Aubert. rkscan: Rootkit Scanner. http:
/lwww.hsc.fr/ressources/outils/rkscan/
index.html.en , 2004,

Black Tie Affair. Hiding Out Under UNIX. Phrack Maga-
zing 3(25), 1989.

FuSyS. Kstat v. 1.1-2. http://sOftpj.org/, Novembe£20
grsecurity. An innovative approach to security utitigi a
multi-layered detection, prevention, and containment ehod
http://www.grsecurity.net/ ,2004.

Halflife. Abuse of the Linux Kernel for Fun and ProfRhrack
Magazine 7(50), April 1997.

G. Kim and E. Spafford. The Design and Implementation of
Tripwire: A File System Integrity Checker. Technical refpor
Purdue University, Nov. 1993.

St. Michael and St. Jude. http://
sourceforge.net/projects/stjude/ ,2004.

T. Miller. TOrn rootkit analysis. http://www.ossec.
net/rootkits/studies/tOrn.txt .

T. Miller. Analysis of the KNARK Rootkit.http://mwww.
ossec.net/rootkits/studies/knark.txt ,2004.
N. Murilo and K. Steding-Jessen. Chkrootkit v. 0.4itp:
/Iwww.chkrootkit.org/

12] D. Safford. The Need for TCPA. IBM White Paper, October

2002.

T@] sd and devik. Linux on-the-fly kernel patching withoM.

Phrack Magazing11(58), 2001.

Stealth. adore. http://spider.scorpions.net/

“stealth , 2001.

Stealth. Kernel Rootkit Experiences and the Futurérack
Magazine 11(61), August 2003.

Stealth. adore-ng. http://stealth.7350.0rg/
rootkits/ ,2004.

TCG. Trusted Computing Group Homdattps://www.
trustedcomputinggroup.org/home ,2004.

